⚠️ This example is deprecated. You can use plot
method from version 3.0
Checking that the notebook is running on Google Colab or not.
import sys
try:
import google.colab
!{sys.executable} -m pip -q -q install pycm
except:
pass
!{sys.executable} -m pip -q -q install matplotlib;
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pycm import ConfusionMatrix
def plot_confusion_matrix(cm,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function modified to plots the ConfusionMatrix object.
Normalization can be applied by setting `normalize=True`.
Code Reference :
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
"""
plt_cm = []
for i in cm.classes :
row=[]
for j in cm.classes:
row.append(cm.table[i][j])
plt_cm.append(row)
plt_cm = np.array(plt_cm)
if normalize:
plt_cm = plt_cm.astype('float') / plt_cm.sum(axis=1)[:, np.newaxis]
plt.imshow(plt_cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(cm.classes))
plt.xticks(tick_marks, cm.classes, rotation=45)
plt.yticks(tick_marks, cm.classes)
fmt = '.2f' if normalize else 'd'
thresh = plt_cm.max() / 2.
for i, j in itertools.product(range(plt_cm.shape[0]), range(plt_cm.shape[1])):
plt.text(j, i, format(plt_cm[i, j], fmt),
horizontalalignment="center",
color="white" if plt_cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('Actual')
plt.xlabel('Predict')
cm = ConfusionMatrix(matrix={0: {0:13, 1:0, 2:0}, 1:{0:0, 1:10, 2:6}, 2: {0:0, 1:0, 2:9}})
plt.figure()
plot_confusion_matrix(cm,title='cm')
plt.figure()
plot_confusion_matrix(cm,title='cm(Normalized)', normalize=True)
plt.show()